Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 36(4): e13378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38482748

RESUMEN

Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.


Asunto(s)
Neuroesteroides , Animales , Ratones , Pregnanolona/metabolismo , Receptores de GABA-A/metabolismo , Miedo/fisiología , Emociones , Colestenona 5 alfa-Reductasa/metabolismo
2.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577684

RESUMEN

The basolateral amygdala (BLA) is an emotional processing hub and is well-established to influence both positive and negative valence processing. Selective engagement of a heterogeneous cell population in the BLA is thought to contribute to this flexibility in valence processing. However, how this process is impacted by previous experiences which influence valence processing is unknown. Here we demonstrate that previous positive (EE) or negative (chronic unpredictable stress) experiences differentially influence the activity of specific populations of BLA principal neurons projecting to either the nucleus accumbens core or bed nucleus of the stria terminalis. Using chemogenetic manipulation of these projection-specific neurons we can mimic or occlude the effects of chronic unpredictable stress or enriched environment on valence processing to bidirectionally control avoidance behaviors and stress-induced helplessness. These data demonstrate that previous experiences influence the responsiveness of projection-specific BLA principal neurons, biasing information routing through the BLA, to govern valence processing.

3.
Neurosci Biobehav Rev ; 152: 105327, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499891

RESUMEN

Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.


Asunto(s)
Neuroesteroides , Humanos , Neuroesteroides/farmacología , Neuroesteroides/uso terapéutico , Antidepresivos/uso terapéutico , Ansiedad , Trastornos del Humor/tratamiento farmacológico
4.
J Neuroendocrinol ; 35(9): e13274, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37186481

RESUMEN

Stress is a major risk factor for psychiatric illnesses and understanding the mechanisms through which stress disrupts behavioral states is imperative to understanding the underlying pathophysiology of mood disorders. Both chronic stress and early life stress alter valence processing, the process of assigning value to sensory inputs and experiences (positive or negative), which determines subsequent behavior and is essential for emotional processing and ultimately survival. Stress disrupts valence processing in both humans and preclinical models, favoring negative valence processing and impairing positive valence processing. Valence assignment involves neural computations performed in emotional processing hubs, including the amygdala, prefrontal cortex, and ventral hippocampus, which can be influenced by neuroendocrine mediators. Oscillations within and between these regions are critical for the neural computations necessary to perform valence processing functions. Major advances in the field have demonstrated a role for oscillatory states in valence processing under physiological conditions and emerging studies are exploring how these network states are altered under pathophysiological conditions and impacted by neuroendocrine factors. The current review highlights what is currently known regarding the impact of stress and the role of neuroendocrine mediators on network states and valence processing. Further, we propose a model in which chronic stress alters information routing through emotional processing hubs, resulting in a facilitation of negative valence processing and a suppression of positive valence processing.


Asunto(s)
Emociones , Trastornos Mentales , Humanos , Emociones/fisiología , Amígdala del Cerebelo/fisiología , Corteza Prefrontal , Hipocampo
5.
Biol Psychiatry ; 94(3): 249-261, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736870

RESUMEN

BACKGROUND: Chronic stress is a major risk factor for psychiatric illnesses, including depression. However, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. Allopregnanolone acts as a positive allosteric modulator preferentially on δ subunit-containing GABAA (gamma-aminobutyric acid A) receptors. Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone analogs; yet, the role of endogenous allopregnanolone in the pathophysiology of depression remains unknown. METHODS: We utilized a chronic unpredictable stress (CUS) mouse model, followed by behavioral and biochemical assays, to examine whether altered neurosteroid signaling contributes to behavioral outcomes following CUS. We subsequently performed in vivo CRISPR (clustered regularly interspaced short palindromic repeats) knockdown of rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2 (5α1/2), in addition to lentiviral overexpression of 5α1/2 in the basolateral amygdala (BLA) of mice that underwent CUS to assess the impact of 5α1/2 on behavioral outcomes. RESULTS: The expression of δ subunit-containing GABAA receptors and endogenous levels of allopregnanolone were reduced in the BLA following CUS. Treatment with an exogenous allopregnanolone analog, SGE-516, was sufficient to increase allopregnanolone levels in the BLA following CUS. Knockdown of 5α1/2 in the BLA mimicked the behavioral outcomes associated with CUS. Conversely, overexpression of 5α1/2 in the BLA improved behavioral outcomes following CUS. CONCLUSIONS: Our findings demonstrate that chronic stress impairs endogenous neurosteroid signaling in the BLA, which is sufficient to induce behavioral deficits. Further, these studies suggest that allopregnanolone-based treatments may directly target the underlying pathophysiology of mood disorders suggesting that targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy.


Asunto(s)
Neuroesteroides , Pregnanolona , Ratones , Animales , Receptores de GABA-A/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico
6.
Biol Psychiatry ; 91(3): 283-293, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561029

RESUMEN

BACKGROUND: Brexanolone (allopregnanolone) was recently approved by the Food and Drug Administration for the treatment of postpartum depression, demonstrating long-lasting antidepressant effects. Despite our understanding of the mechanism of action of neurosteroids as positive allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors, we still do not fully understand how allopregnanolone exerts persistent antidepressant effects. METHODS: We used electroencephalogram recordings in rats and humans along with local field potential, functional magnetic resonance imaging, and behavioral tests in mice to assess the impact of neurosteroids on network states in brain regions implicated in mood and used optogenetic manipulations to directly examine their relationship to behavioral states. RESULTS: We demonstrated that allopregnanolone and synthetic neuroactive steroid analogs with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound] and zuranolone [SAGE-217, investigational compound]) modulate oscillations across species. We further demonstrated a critical role for interneurons in generating oscillations in the basolateral amygdala (BLA) and a role for δ-containing GABAA receptors in mediating the ability of neurosteroids to modulate network and behavioral states. Allopregnanolone in the BLA enhances BLA high theta oscillations (6-12 Hz) through δ-containing GABAA receptors, a mechanism distinct from other GABAA positive allosteric modulators, such as benzodiazepines, and alters behavioral states. Treatment with the allopregnanolone analog SGE-516 protects mice from chronic stress-induced disruption of network and behavioral states, which is correlated with the modulation of theta oscillations in the BLA. Optogenetic manipulation of the network state influences the behavioral state after chronic unpredictable stress. CONCLUSIONS: Our findings demonstrate a novel molecular and cellular mechanism mediating the well-established anxiolytic and antidepressant effects of neuroactive steroids.


Asunto(s)
Complejo Nuclear Basolateral , Pregnanolona , Animales , Antidepresivos , Complejo Nuclear Basolateral/metabolismo , Femenino , Moduladores del GABA , Ratones , Pregnanolona/farmacología , Ratas , Receptores de GABA-A/metabolismo
7.
Neurobiol Stress ; 11: 100198, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31709278

RESUMEN

Recent FDA approval of an allopregnanolone-based treatment specifically for postpartum depression, brexanolone, now commercially called Zulresso®, is an exciting development for patients and families impacted by postpartum depression and allows us to start asking questions about why and how this compound is so effective. Allopregnanolone is a neuroactive steroid, or neurosteroid, which can be synthesized from steroid hormone precursors, such as progesterone, or synthesized de novo from cholesterol. Neurosteroids are positive allosteric modulators at GABAA receptors (GABAARs), a property which is thought to mediate the therapeutic effects of these compounds. However, the durability of effect of brexanolone in clinical trials questions the mechanism of action mediating the remarkable antidepressant effects, leading us to ask why and how does this drug work. Asking why this drug is effective may provide insight into the underlying neurobiology of postpartum depression. Exploring how this drug works will potentially elucidate a novel antidepressant mechanism of action and may provide useful information for next generation drug development. In this review, we examine the clinical and preclinical evidence supporting a role for allopregnanolone in the underlying neurobiology of postpartum depression as well as foundational evidence supporting the therapeutic effects of allopregnanolone for treatment of postpartum depression.

8.
Front Behav Neurosci ; 12: 221, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356904

RESUMEN

Hypoxic-ischemic (HI) encephalopathy is a devastating injury that occurs when the fetal brain is deprived of oxygen and blood to a degree that may lead to neurological damage, seizing and cerebral palsy. In rodents, early environmental enrichment that promotes maternal care-taking behavior (mCTB) can improve neurobehavioral outcomes and protect against neurological decline. We hypothesized that an enhanced nesting environment would improve mCTB as measured by pup weight gain, and support greater HI recovery in developing rats. Pregnant dams (E15-16) were introduced to either control Standard Facility (SF) housing or closed nestbox (CN) conditions and maintained in larger cages through pup weaning. On postnatal day (PND) 7, male and female Long-Evans rat pups (N = 73) were randomly sorted into one of two surgical conditions: control and HI. HI pups received isoflurane anesthesia and right carotid artery ligation, a 2-h rest followed by 90 min exposure to a moist hypoxic (92% N, 8% O2) chamber. Pups (PND 8) were weighed daily, and tested on the Morris Water Maze (MWM) task (PND 35-50). Results demonstrate significant differences afforded to male and female pups based on weight measure, where CN-rearing modifies pre-weaning adolescent weights in females and increases post-weaning weights in males and females by an average of 10 g. Following successful MWM training and acquisition (PND 35-37), both male and female CN-raised animals demonstrated faster latency to find the hidden platform (HP) during HP trials (PND 38-42) and appeared to freely explore the MWM pool during an additional probe trial (PND 43). Moreover, after sacrifice (PND 60), CN rearing created sex-specific alterations in brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) immunopositive cell staining of the dorsomedial striatum and CA1 of the hippocampus. CN-rearing afforded HI males higher BDNF levels in the striatum and produced greater GDNF levels in the hippocampus of HI-injured females. These results suggest that early life environmental enrichment positively modifies nesting environment, increases weight gain, as well as spatial learning and memory in a sex-specific directionality. Our findings also implicate correlative changes in corticolimbic neurotrophin protein levels in the CN-reared animals that may contribute to these benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA